Вялые Записки Скучного Человека

журнал Бориса Овчинникова

Previous Entry Share Next Entry
Володинские 62,2% в Саратове: математическое доказательство фальсификации для чайников
barouh

Последние дни много веселья про результаты выборов в Саратове, где более чем на четверти участков результат Единой России оказался ровно 62,2% с точностью плюс-минус несколько сотых процента. Вот тут наглядно. Особой пикантности придает тот факт, что в Думу от Саратовской области баллотировался Володин - зампред президентской администрации, куратор всех выборов и будущий спикер Госдумы

На уровне базовой вменяемости понятно, что не может быть такое совпадение результатов на десятках участков. Но люди просят ДОКАЗАТЕЛЬСТВ. Ну что же, объясняю на пальцах и с цифрами. Математическое доказательство того, что результаты выборов по Саратову фальсифицированы

Для начала представьте себе огромный контейнер, в котором много-много (больше 100 тысяч) шаров. Белые и черные. Черных больше - 62,2% от всех. Шары равномерно и добросовестно перемешаны - т.е. в любой части контейнера соотношение белых и черных шаров примерно одинаковое
Теперь мы вслепую достаем шары из этого контейнера и раскладываем по кучкам. Пусть в каждой кучке у нас будет 1340 шаров. Сколько в каждой кучке будет черных шаров? Можем ли мы быть уверены, что в каждой кучке доля черных шаров будет именно 62,2%, а не скажем 62,0%, 62,4% или 65,0%? Тут нам на помощь приходит математика биномиального распределения. Биномиальное распределение - это такое случайное распределение, у которого может быть только два значения (0 или 1, "да" или "нет") и у которого есть определенная вероятность, что случится исход "да". Вокруг этого построен большой и важный раздел теории вероятности, и здесь используется четкая и легко доказуемая математика
Прежде чем с помощью тервера отвечать на условно сложный вопрос про 1340 шаров, давайте посмотрим на простую ситуацию - вытаскиваем 2 шарика. У нас может быть всего 4 комбинации: черный-черный, черный-белый, белый-черный, белый-белый. Вероятность, что будет 2 белых шара, примерно 15% (37,8% в квадрате), вероятность, что будет 2 черных шара, чуть меньше 40% (62,2% в квадрате). Остальные примерно 45% - это вероятность того, что будет 1 белый шар и 1 черный шар (нам не важно, в каком порядке мы их вытащим). Если у нас 3 шарика, то комбинаций уже 8, вероятность 3 белых шаров около 6%, вероятность 3 черных шаров около 35%, а скорее всего у нас будет 1 или 2 черных шара. Ну и так далее.
Есть понятные и достаточно легко выводимые формулы (вот например не очень заумное описание), есть функция в Excel под названием BINOMDIST (БИНОМРАСП), которая позволяет рассчитать вероятность для любого количества успешных исходов при определенном количество "попыток" (в нашем примере это вытаскиваемые шары) и определенной вероятности.
Например, если мы вытащили 1340 шариков из большого контейнера, в котором доля черных шаров составляет 62,2%, то вероятность, что в кучке окажется менее 60% черных шаров составляет 5,2%, а что более 65% - 1,8%. Менее 62% получится с вероятностью 43%, более 63% - с вероятностью 29% (и соответственно только 28% исходов придется на диапазон от 62% до 63%). Вероятность же того, что при округлении до десятых процента у нас получится ровно 62,2%, совсем небольшая - такой результат получится только если черных шаров будет 833 или 834, а вероятность любого из этих исходов составляет примерно 2,2% (4,5% в сумме). То есть только в каждой 22-ой кучке у нас доля черных шаров (округленная до десятых долей процента) будет такой же, как во всем контейнере - в остальных кучках она будет немного (на десятые доли процента или на несколько процентов) больше или меньше; в половине случаев отклонение будет 1% или более.

А теперь вместо шаров подставим избирателей. Кучки = избирательные участки, 1340 = среднее количество избирателей, проголосовавших на саратовских участках; 62,2% = результат Единой России на сомнительных участках; контейнер = все саратовские участки, где повторяется результат 62,2% (а точнее от 62,135% до 62,245%). Здесь мы на самом деле делаем два важных допущения В ПОЛЬЗУ предположения о честности саратовских избиркомов: во-первых, мы допускаем, что за Единую Россию в сумме по обсуждаемым участкам действительно проголосовало 62,2% избирателей (т.е. что в "контейнере" доля черных шаров действительно 62,2%); во-вторых, мы допускаем, что участки одинаковые по характеристикам избирателей, т.е. что белые и черные "шары" хорошо перемешаны и отличия между "кучками" по доле черных шаров случайны. На самом деле оба допущения конечно же не соответствуют действительности, но нам важно доказать, что даже при максимально лояльных к избиркомам допущениям полученные в Саратове результаты статистически невероятны (если мы предположим, что на самом деле вероятность голосования за Единую Россию в целом по городу не 62,2%, а меньше или больше, или если мы предположим, что между отдельными избирательными участками есть фундаментальные различия по составу электората, наша оценка вероятности попадания результата ЕР на конкретном участке в 62,2%, а точнее в диапазон 62,135%-62,245%, резко упадет). Вероятность (попадания точно в 62,2%) на уровне 4,5%, которая у нас посчиталась выше, - это максимально возможная, максимально лояльная к избиркомам оценка.
Итак, если в городе (районе, группе избирательных участков) за Единую Россию в среднем голосует 62,2%, то на участке с 1340 избирателями вероятность попадания результата (с точностью до десятых процента) в 62,2% составляет 4,5%. А вот на участке с 1341 избирателями вероятность такого попадания уже составляет всего лишь 2,2% - потому что в искомый диапазон попадает уже не 2 числа (833 и 834), а только одно (834). Если взять официальные данные по количеству проголосовавших по каждому из 107 прославившихся участков (а там по официальным цифрам голосовало от 550 до 1922 человек на каждом участке), то в среднем по этим участкам вероятность попадания результата ЕР в диапазон от 62,135% до 62,245% составляет 3,4% (разброс от 1,9% до 5,3%)

На картинке показано распределение саратовских участков по явке - с группировкой по "бинам" шириной в 0,1%. И для сравнения синенький холмик - распределение, которое должно было получиться, если бы все участки Саратова были бы примерно одинаковые, и различия между ними носили случайный характер (в реальности, с учетом экономических и социальных различий между районами города, "холмик" должен был бы быть еще более низким и широким)



Выше мы посчитали по отдельным участкам. А чтобы от этого перейти к оценке вероятности в целом по Саратову, мы смоделируем еще одно биномиальное распределение. В первом распределении у нас исходом было голосование или неголосование конкретного избирателя за Единую Россию. Во втором распределении таким исходом уже является попадание или непопадание результата ЕР на конкретном участке в 62,2%. Участков в Саратове 346, из них на 107 участках результат Единой России составил от 62,136% до 62,245%, вероятность попадания участка в этот диапазон в среднем 3,4%. При такой вероятности подобных участков должно было бы быть в Саратове около 12. А их оказалось 107! 95 сверхнормативных попаданий. Эксель даже не может посчитать вероятность такого "везения" - в какой-то момент он округляет до нуля. Но эксель может посчитать, что вероятность 10 и более попаданий сверх нормы (22 УИКа и более) составляет 0,4%, вероятность 20 попаданий сверх нормы уже в 9300 раз меньше - только 0,000045% (1 раз на 2,2 миллиона голосований). Максимум, что может посчитать эксель - 46 попаданий из 346: вероятность 1 на 180 триллионов. Дальше можно только примерно оценивать - для 107 попаданий у меня получилась вероятность примерно 10 в степени -44. Примерно как если бы в рулетке одно и то же число выпало 28 раз подряд. Вот у единоросов в Саратове точно такая же феноменальная стабильность и везение

Еще раз: вероятность того, что популярность в Саратове результата ЕР 62,2% получилась случайно (а не в результате рисования цифр) составляет не более 10-44

А вещь еще в Саратове было 35 участков, где результат Единой России чуть больше 62,2% - от 62,25% до 62,40%. Таких 35 участков. Вероятность, что эти 35 участков скучковались случайно, - 0,0001% или 1 случай на 945 тысяч. Так что математически фальсификации в Саратове доказываются даже не на 107 участках, а как минимум на 142 участках - это почти половина города.

P.S. Спасибо заинтересованному читателю, который не поленился продублировать мои расчеты. Похоже, что я сильно завысил вероятность саратовского совпадения. Для 107 участков вероятность совпадения получается не 10-44, а видимо что-то около 10-70 или 10-80

</sup>


  • 1
Огорчу. "Они" - это не только математики, но и например политологи, как скажем хозяин этого журнала. Первые публикации про выборы и фальсификации в научных журналах у меня еще в прошлом веке были
И кстати - это только в России под "политологией" понимают в основном пустую болтовню. Нормальная political science без математики - включая теорию вероятности - не обходится

1. Крайне удивлён.

2. Я знаю, спасибо.

А тогда какие претензии к тому, что они математики? Современная наука вообще творится на стыке дисциплин

Потому, что когда чистый математик берётся за подобное исследование, да ещё и за формулировки выводов из него, это чистый overhead.

Математик, даже очень опытный, умный, знающий и проч., не должен руководить постройкой например моста через реку. Это должен делать инженер. Потому, что для математика число Pi - бесконечно. А для инженера это 3.141526 и всё на этом! Так же и с политическими процессами: исследовать их должны политологи. Конечно можно использовать при этом и математиков, только надо заставлять их округлять Pi ) Ну Вы поняли я думаю.

«…Современная наука вообще творится на стыке дисциплин…»

По исследованию выборов уже наверное десятки учебников написано - чего тут "современного" то? Старая древняя тема. С появлением компьютеров стало конечно всё оперативнее и проще, но и только-то. Методики выборов они не меняются уже сотни лет - почему должны тогда сильно поменяться и методики исследования?

Десятки учебников по исследованию выборов? А ссылками поделитесь пожалуйста. А то мне ни один не попадался :)

Кстати, в части методики выявления фальсификаций российская наука (в лице отдельных энтузиастов) наверное впереди всей планеты - поскольку в других странах или такая проблема неактуальна, потому что считают честно, или неактуальна, потому что выборов нет или они давно превращены в абсолютную фикцию

Вы обратили внимание, что я написал "наверное"? Т.е. я предполагаю, что их должно быть много. Но это не моя специальность и вот так, сходу, дать пяток названия я конечно не смогу.

Но. Я сегодня давал уже линк на "библию": http://grachev62.narod.ru/Mr/Mr_og.html

«…Кстати, в части методики выявления фальсификаций российская наука (в лице отдельных энтузиастов) наверное впереди всей планеты…»

Это вы про "шпилькиных"? Но это же лажа лажевая: без исследования, без мат.моделей...

Странно писать "наверное с десяток", если не можете назвать хотя бы один

"Библия" конечно неплохая - для студентов сгодится (правда не дремучее издание середины 90-х - все-таки с тех пор компьютерные технологии сильно изменили мир аналитики). Но для анализа российских выборов мало что дает :)

Про ценность и научность того, что делает Шпилькин, спорить не буду. Бессмысленно это обсуждать с человеком, который считает, что там нет исследований

Чего странного? Это моё предположение. Выборы - важный электоральный процесс и наверняка в мире полно исследований, диссертаций, монографий и учебников на эту тему. Другое дело, что это узкоспециальный вопрос, в разрезе политологии или, тем более, математики, и посему данные учебники не валяются на поверхности, так сказать, в отличии от научных работ и учебников по penis enlarget :)

  • 1
?

Log in

No account? Create an account